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Shrinking Small Sample Problems in Multilevel Structural Equation Modeling 
via Regularization of the Sample Covariance Matrix

Julia-Kim Walthera , Martin Hechtb and Steffen Zitzmannc 

aUniversity of T€ubingen; bHelmut Schmidt University; cMedical School Hamburg 

ABSTRACT 
Small sample sizes pose a severe threat to convergence and accuracy of between-group level param
eter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as 
pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a 
remedy, we propose a two-stage regularized estimation approach designed for scenarios with both a 
small number of groups and small group sizes, and a low ICC. The method employs the wide format 
approach to multilevel SEM, where, at first, the sample covariance matrix is replaced by a shrinkage 
estimate, and then, this estimate is used to fit the SEM. By means of a simulation study, we evaluated 
the effectiveness of our two-stage approach. Our findings demonstrate that this method consistently 
ensures model convergence, provides more accurate between-level estimates, and even improves 
accuracy of within-level estimates in cases of very small group sizes.

KEYWORDS 
ICC; multilevel SEM; 
regularization; small 
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In psychology and the education sciences, observational 
units are often nested within higher-level units, such as stu
dents (level-1 units) within classes (level-2 units). Multilevel 
structural equation modeling (SEM) is a powerful tool for 
estimating parameters across these different levels. In the 
within-between framework used by common statistical soft
ware (e.g., Mplus and lavaan), parameters are decomposed 
into within-group level (e.g., student) and between-group 
level (e.g., class) components. Challenges arise when sample 
sizes are small at any level, leading traditional maximum 
likelihood estimation (MLE) methods to either fail to con
verge or produce highly inaccurate estimates of between- 
group level parameters (e.g., Hox et al., 2010; Hox & Maas, 
2001; L€udtke et al., 2008, 2011; McNeish & Stapleton, 2016; 
Meuleman & Billiet, 2009; Shin & Raudenbush, 2010; 
Stegmueller, 2013; Zitzmann, 2018; Zitzmann et al., 2015). 
However, collecting larger samples can be costly, time- 
consuming, or impractical for specific study designs, such as 
pilot studies with limited classes and students, or for certain 
populations, such as school boards. Moreover, small varian
ces at the class (between-group) level, often expressed in 
relation to large variances at the student (within-group) 
level as low Intra Class Correlation (ICC), further lower 
convergence rates (L€udtke et al., 2011; Zitzmann, 2018), and 
accuracy of class (between-group) level parameter estimates 
(Hox & Maas, 2001; L€udtke et al., 2011; Muthen & Satorra, 

1995; Zitzmann et al., 2021). Therefore, in scenarios with 
small samples and low ICCs, there is a need for an alterna
tive approach that is straightforward to implement and can 
mend both convergence and accuracy issues.1

A broad category of methods, known as regularization 
encompasses techniques aimed at enhancing convergence and 
accuracy in statistical analyses. Originally developed by 
Tikhonov (1943) to address stability issues in inverse matrix 
problems, the concept of regularization was swiftly adopted 
by the statistical community to adapt traditional MLE to pro
duce “reasonable answers in unstable situations” (Bickel et al., 
2006, p. 272). “Unstable situations” cover a variety of scen
arios, among them small sample sizes, where the goal is typic
ally to minimize the chances of encountering degenerate 
matrices, inadmissible solutions, and models that either do 
not converge or yield highly inaccurate outcomes. Techniques 
commonly used involve refining traditional maximum likeli
hood estimation (MLE) by incorporating approaches such as 
shrinkage, constraints, fixed parameters, or penalties. Overall, 
the goals and techniques of regularization approaches differ 
considerably fairly. For instance, shrinkage estimation of the 
covariance matrix (e.g., Touloumis, 2015) aims at obtaining a 
well-behaved eigenstructure and more accurate estimates, 
whereas penalizing the objective function of estimators (e.g., 
P.-H. Huang et al., 2017; Jacobucci et al., 2016) is motivated 
by the goal of achieving more parsimonious models. Despite 
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their differences, all approaches share a common feature: they 
introduce a moderate amount of bias into estimation. This is 
driven by the principle of a “bias-variance tradeoff,” where 
the strategy is to reduce variance by accepting increased bias, 
thereby enhancing the overall accuracy of the estimation. We 
understand regularization as umbrella term for biased estima
tors that are employed in unstable situations.2

Within the general SEM framework, several regulariza
tion techniques have been employed to alleviate estimation 
problems encountered with small sample sizes. For instance, 
techniques such as constrained MLE and Bayesian estima
tion introduce bias into MLE by either limiting the range of 
possible parameter values, such as setting latent variances to 
one, or using weakly informative priors. These methods, 
which include contributions from Anderson and Gerbing 
(1984), Chen et al. (2001), and Zitzmann et al. (2022) for 
constrained MLE, and Depaoli and Clifton (2015), 
Zitzmann et al. (2016), and Ulitzsch et al. (2023) for 
Bayesian estimation, specifically target the calculation of 
model parameters, essentially the “output” of a structural 
equation model (SEM). However, in situations where non- 
convergence and poor estimation accuracy is contingent on 
a distorted eigenstructure of the sample covariance matrix3, 
essentially the “input” of a SEM, simply adjusting model 
parameters through regularization will not suffice.

In such cases, regularizing the sample covariance matrix 
itself may prove to be a more effective solution. The ridge 
method, widely used for addressing eigenstructure issues in 
the sample covariance matrix (Kamada et al., 2014; Yuan 
et al., 2011; Yuan & Chan, 2008), involves a subtle yet 
impactful adjustment: it adds a small value to its diagonal 
elements (i.e., variances of the observed variables). This 
technique has been demonstrated to significantly improve 
both the rate of convergence and, potentially, also the accur
acy of estimations (Kamada et al., 2014; Kamada & Kano, 
2012; Yuan & Bentler, 2017). However, employing techni
ques beyond ridging, which primarily yields a well-behaved 
eigenstructure in the sample covariance matrix, may 
enhance the accuracy of estimation a fortiori.

A considerable number of methods has been developed 
to regularize the sample covariance matrix in statistics, and 
applied research fields such as portfolio selection in finance 
and estimation of large covariance matrices in genomics. 
Shrinkage estimation, a key approach among these, has its 
origin in the work of Stein (1956), who highlighted the bias 

in eigenvalues of the sample covariance matrix in small sam
ples. The Steinian (or Stein-type) shrinkage technique creates a 
weighted average of the sample covariance matrix and a prede
termined target matrix, which imposes a specific structure. For 
instance, using the identity matrix as the target suggests that 
variances are one, covariances are zero, and eigenvalues are 
one. The weighting shrinks the sample covariance matrix and 
their eigenvalues towards those of the target matrix. These 
approaches vary by the choice of target matrix and how the 
weighting (or shrinkage) parameter is calculated. In unstable 
scenarios with small sample size paired with a large number of 
observed variables (“small N, large p”), shrinkage estimation 
has been shown to surpass traditional MLE in maintaining 
eigenstructure and improving accuracy (e.g., Ledoit & Wolf, 
2004; Touloumis, 2015). Ledoit and Wolf (2012) concluded 
that without additional information on the true covariance 
matrix’s structure, shrinkage estimation has been arguably the 
most effective method so far (for an overview of shrinkage 
estimation see, e.g., Ledoit & Wolf, 2020).

Even though particularly promising, shrinkage estimation 
of the covariance matrix has been barely scrutinized in the 
context of SEM. Notable exceptions include studies by 
Arruda and Bentler (2017) and De Jonckere and Rosseel 
(2023), who explored its application in single-level SEM, 
and found it to enhance overall model evaluation, conver
gence and accuracy without significant computational costs. 
Despite these findings, evidence remains sparse, and in 
multilevel SEM, it is even more so. Here, Zitzmann et al. 
(2021) applied shrinkage (Bayesian) estimation to the 
between-group variance of the predictor in a bivariate two- 
level model which led to more accurate model parameters at 
the between-group level in small samples. The present article 
aims to examine the effectiveness of shrinkage estimation of 
the covariance matrix for handling small sample sizes and low 
ICCs in multilevel SEMs in a proof of concept manner. More 
specifically, it scrutinizes whether integrating shrinkage estima
tion into a two-stage SEM estimation approach improves 
convergence rates and the accuracy of between-group level 
parameter estimates. To explore this, we examine balanced, 
continuous two-level data using two-level intercept-only mod
els by means of a simulation study. The article is structured as 
follows. Firstly, as we use the single-level CFA approach to 
multilevel SEM (Barendse & Rosseel, 2020; Mehta & Neale, 
2005; Walther et al., 2024), which utilises the data in wide for
mat (WF), we offer a concise overview of this approach. 
Secondly, we detail the shrinkage approach proposed by 
Touloumis (2015) that we have adopted in this study, and we 
elaborate on how it modifies the (co)variances at both levels 
when applied in multilevel SEM. Thirdly, we present the out
comes of our simulation study, discuss its implications, and 
suggest directions for future research.

1. Multilevel Structural Equation Modeling

Suppose, we observed four classes (number of groups g ¼ 4) 
with two students within each class (balanced group size 
n ¼ 2). This yields a total sample size of four students 
(N ¼ g � n ¼ 4). We investigate two observed variables 

2Note that in psychology and the educational sciences, we might be more 
familiar with terms other than regularization. “Stabilization” is often used in 
the context of accuracy and model selection (e.g., Breiman, 1996; Ulitzsch 
et al., 2023; Zitzmann, 2018). “Smoothing” is a prominent term in the context 
of improving the eigenstructure of covariance matrices (e.g., Lorenzo-Seva & 
Ferrando, 2021; Wothke, 1993). More recently, “regularization” found its way 
into the mainstream literature to denote matters related to improper 
solutions, model sparsity, and overfitting (e.g., Arruda & Bentler, 2017; 
Jacobucci et al., 2016; Jung & Takane, 2007; Liang & Jacobucci, 2020; Orzek & 
Voelkle, 2023; Williams & Rodriguez, 2022). However, there is no strict usage 
of the terms, and we are not aware of any consistent taxonomy.
3This means that the sample eigenvalues are more spread out compared to 
their population counterparts which makes non-invertible (i.e., singular, 
degenerate), non-positive definite matrices with large condition numbers 
more likely.
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(p ¼ 2), namely, engagement during class (x1), and perform
ance in a test (x2). The whole data set is depicted in Panel 
A in Figure 1. We are interested in whether students within 
the same class show more similar engagement during class 
(x1) and performance in the test (x2) than students across 
different classes. In other words, we scrutinize whether vari
ance at the class (between-group) level is substantially large 
compared to the student (within-group) level; that is, 
whether ICC > 0: The population models are depicted to 
the right in Panel A. For both variables, ICC ¼ 0:05:

To analyze the data, we use a two-level intercept-only 
model. This model can be estimated through two different 
multilevel SEM approaches that mainly differ by their 
required data format: the long format (LF) approach 
(Muth�en, 1990, 1994), and the wide format (WF) approach 
(Barendse & Rosseel, 2020; Mehta & Neale, 2005). The ana
lytical and empirical equivalence of both approaches with 
MLE in terms of estimation accuracy has been demonstrated 
(Barendse & Rosseel, 2020; Mehta & Neale, 2005; Walther 
et al., 2024), and both methods can be implemented using 
the SEM package lavaan in R. However, given that the 
lesser-known WF approach is critical for our two-stage 
approach, we will focus on this approach in the following, 
highlighting the differences of the data format in terms of 
data matrix, sample covariance matrix, and the model speci
fication. Nevertheless, we will consider the unregularized, 
standard LF approach in the simulation study. Details on 
model estimation and fitting functions for continuous varia
bles are available in existing literature (e.g., Mehta & Neale, 
2005).

1.1. The Wide Format (WF) Approach

The wide format (WF) approach essentially uses a single- 
level restricted CFA which is fitted to the total (two-level) 
data matrix in WF (WF-T). In WF-T, every observed vari
able p is split into every nth unit (see Panel B), which we 
call “specific-units” variables in contrast to the p “all-units” 
variables in the LF approach. The rationale underneath is 
that “people [n] are variables too” (Mehta & Neale, 2005, p. 
1). For instance, x1:2 is engagement during class (x1) for 
every 2nd student in class. The sample covariance matrix is 
estimated by the MLE for single-level data. Thus, we obtain 
a single-level represented two-level sample covariance matrix 
SWF−T from the p � n “specific-units” variables in WF-T (see 
Panel C).

In the model, class (between-group) level parameters are 
modelled by common factors, and student (within-group) 
level parameters are modelled by unique factors that are 
equality constrained. The means and (co)variances of the 
common factors are estimated freely to obtain the class 
(between-group) level parameters. Variances of the unique 
factors of each common factor are equality constrained to 
estimate student (within-group) level variances. Covariances 
among unique factor of every n-th observed variable of each 
p are equality constrained to estimate student (within- 
group) level covariances (see Panel D). The equality con
straints represent the homoscedasticity assumption (of the 

specific-units variables). For our example, we would have 
two common factors (because of p ¼ 2 observed variables) 
with two observed variables for each common factor 
(because of p � n specific-units variables in WF-T). Thus, 
two means, two variances, and one covariance of common 
factors for the class (between-group) level, and two varian
ces, and one covariance of unique factors for the student 
(within-group) level are estimated freely.

The implementation of traditional MLE in SEM software 
such as lavaan requires a positive definite sample covariance 
matrix (Hamaker et al., 2003; Singer, 2010; Van Montfort 
et al., 2018; Voelkle et al., 2012). Amongst other things, this 
necessitates a data matrix whose number of columns is less 
than or equal to the number of rows because otherwise, at 
least one sample eigenvalue becomes zero and the sample 
covariance matrix turns non-positive definite (e.g., Duncan 
et al., 1997; Gorsuch, 1983; Wothke, 1993). In the WF 
approach, cols � rows translates to ðp � nÞ � g: Alternatively, 
the raw data formulation of MLE, full information max
imum likelihood (FIML), may be used, which circumvents 
the problem (Hamaker et al., 2003; Trendafilov & Unkel, 
2011; Unkel & Trendafilov, 2010; Voelkle et al., 2012). In 
lavaan, FIML estimation could be applied by setting 
‘missing ¼ “fiml”’. However, since we aim to replace the 
sample covariance matrix with a shrinkage estimate that has 
an improved eigenstructure, we must use traditional MLE 
instead of FIML. Moreover, we must use single-level SEM 
(i.e., the WF approach), because in multilevel SEM, such as 
implemented in lavaan version 0.6–15, we cannot provide a 
covariance matrix instead of a data matrix. We will turn 
towards shrinkage estimation in the subsequent section.

2. Shrinkage Estimation of the Covariance Matrix

In shrinkage estimation, the population covariance matrix R 

is estimated as a weighted average of the sample covariance 
matrix and a pre-specified target matrix. The amount of 
weighting is controlled by the shrinkage parameter k 2

½0, 1�: If k ¼ 0, no shrinkage is applied, and the sample 
covariance matrix will be kept. If k ¼ 1, we obtain the tar
get matrix as the estimate of R: In linear shrinkage, which 
we focus on, the same shrinkage intensity is applied to every 
element of the covariance matrix. To avoid misunderstand
ing: “shrinkage” does not necessarily mean that the elements 
get smaller, but they are shrunken towards a certain value 
(of the target matrix). For example, if rS ¼ 0:1 and rT ¼ 1, 
then 0.1 is “shrunken” towards 1. The target matrix is 
chosen for its well-behaved eigenstructure, making shrink
age estimates more likely to be positive definite, non-singu
lar, and well-conditioned, often resulting in greater accuracy 
compared to the traditional ML sample covariance matrix, 
as demonstrated in studies such as Ledoit and Wolf (2004, 
2020). Additionally, shrinkage estimation can be viewed as a 
form of Bayesian estimation with weakly informative priors, 
a perspective supported by Ledoit and Wolf (2004), and 
others. In the next section, we will briefly review the linear 
shrinkage estimator proposed by Touloumis (2015), which 
we term covshrink for convenience.
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Figure 1. Data and model in the long format (LF) and wide format (WF) approach. 
Note. Data set: the data collected in a given setting. Data Matrix: the data set in matrix form, where columns refer to observed variables and rows to observed units. 
Data Format: one of two possible formats of the data matrix, long format (LF) or wide format (WF). In WF, every observed variable p is split for every unit in the 
group n. For instance, x1:2 is x1 for every 2nd unit in the group. Sample Covariance Matrix: a symmetric matrix which contains (co)variances of the observed varia
bles. Model Specification: representation of the model to be estimated, here, a two-level intercept-only model. Between-group parameters are located above the 
dashed line; within-group parameters below. At the within-group level, identical parameters indicate equality constrains. Data matrix or sample covariance matrix, 
and model specification are input to lavaan. Example data set with number of groups g ¼ 4, group size n ¼ 2, and number of observed variables p ¼ 2: The R 
code to generate data and model is available in Appendix A.
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2.1. Covshrink: A Linear Shrinkage Estimator of the 
Covariance Matrix

Touloumis (2015) refined the popular linear shrinkage esti
mator by Ledoit and Wolf (2004) through (1) extending the 
set of target matrices, and (2) deriving consistent closed 
form solutions of the shrinkage parameters in “small N, 
large p” settings. This new family of estimators has demon
strated improved estimation compared to preceding meth
ods, indicated by the simulated percentage relative 
improvement in average loss (SPRIAL), which compares the 
MSE of the target estimator to that of a baseline estimator 
(e.g., the sample covariance matrix), in such settings 
(Touloumis, 2015). The general equation for the linear 
shrinkage estimator is expressed as:

Ŝ� ¼ ð1 − k̂ÞSþ k̂T, (1) 

where S is the unbiased MLE of the (single-level) p� p popu
lation covariance matrix, T is the target matrix, and k̂ is the 
shrinkage parameter, which depends on the choice of the tar
get matrix. The target matrix can be one of three diagonal 
matrices: the equal target matrix v̂Ip with the mean of the 
sample variances in the diagonal (originally proposed by 
Ledoit & Wolf, 2004), the identity matrix Ip with ones in the 
diagonal, or the unequal target matrix DS with the sample 
variances in the diagonal. Across all types of target matrices, 
off-diagonal elements (i.e., covariances) of the shrinkage esti
mate are systematically pulled towards zero. However, the 
specific non-zero value to which on-diagonal elements (i.e., 
variances) are pulled varies depending on the target matrix 
employed. When using the equal target matrix v̂Ip, variances 
are pulled towards the mean of the sample variances. 
Meanwhile, the identity matrix Ip pulls variances towards one, 
while the unequal target matrix DS leaves the variances 
unchanged. The closed form solution of the shrinkage param
eter of the equal matrix v̂Ip, where v̂ ¼ Y1N=p, is:

k̂E ¼
Y2N þ Y2

1N

NY2N þ Y2
1N þ

p−Nþ1
p Y2

1N
, (2) 

for the shrinkage parameter of the identity matrix Ip:

k̂I ¼
Y2N þ Y2

1N
NY2N þ Y2

1N − ðN − 1Þð2Y1N − pÞ
, (3) 

and for the shrinkage parameter of the unequal target 
matrix DS:

k̂U ¼
Y2N þ Y2

1N − 2Y3N

NY2N þ Y2
1N − ðN − 1ÞY3N

, (4) 

where Y1N , Y2N , and Y3N are combinations of U-statistics 
(for their estimation, see Touloumis, 2015, pp. 5, 12). 
According to Touloumis (2015), the optimal shrinkage 
intensity, which minimizes the MSE between the population 
covariance matrix and the respective shrinkage estimator, is 
approximated by sample-based unbiased and ratio-consist
ent estimators. The resulting biased shrinkage estimators of 
R are Ŝ

�

E (equal target matrix), Ŝ
�

I (identity target matrix), 
and Ŝ

�

U (unequal target matrix). Because the shrinkage 
parameters have a closed form, the approach is 

computationally fast, regardless of the number of observed 
variables p. Moreover, the obtained estimates are non-singu
lar and well-conditioned. These are useful properties for 
convergence (e.g., lavaan requires a positive definite sample 
covariance matrix in single-level SEM), and estimation 
accuracy (e.g., large condition numbers have been linked to 
the less stable estimates; Y. Huang & Bentler, 2015; Kelley, 
1995; Lange et al., 1999; Yuan & Bentler, 2017).

3. Shrinkage Estimation of the Covariance Matrix in 
Multilevel Structural Equation Modeling

Shrinkage estimation of the covariance matrix is part of our 
two-stage approach.4 At the first stage, the sample covari
ance matrix is replaced by a shrinkage estimate of R: At the 
second stage, the model is estimated based on this refined 
estimate. Touloumis (2015) shrinkage estimator was opti
mized for “small N, large p” scenarios which, can be trans
lated to “small g, small n, large p” configurations in the 
context of multilevel analysis. While this two-stage approach 
appears to be a resource-efficient strategy for addressing 
issues such as non-convergence and inaccurate between- 
group level parameter estimates resulting from small 
samples or low ICCs, only a limited body of research has 
investigated the performance of such methods within the 
SEM framework (Arruda & Bentler, 2017; De Jonckere & 
Rosseel, 2023; Zitzmann et al., 2021). Existing evidence sug
gests that similar two-stage approaches can indeed enhance 
convergence and estimation accuracy. However, such an 
approach has not yet been proposed and investigated in the 
context of multilevel SEM. In the subsequent section, we 
will delve deeper into how the (co)variances in the shrink
age estimate differ from those in the sample covariance 
matrix, and elucidate the implications for model parameters.

3.1. WFcovshrink: Shrinkage Estimation of the 
Covariance Matrix in the WF Approach

Recall that the WF approach is a single-level SEM approach 
that utilises the single-level represented two-level sample 
covariance matrix SWF−T where the (co)variances of p � n 
“specific-units” variables are contained (revisit Figure 1 for 
more details). The normal theory derived, biased MLE reads:

SWF−T ¼
1
g

Xg

j¼1
ðX:ij − X:iÞðX:ij − X:iÞT , (5) 

where X.i denotes the data matrix in WF (WF-T) and X:i 
denotes a row vector with grand mean estimates. The sam
ple covariance matrix is the estimate of the population 
covariance matrix, SWF−T ¼ R̂WF−T : When shrinkage esti
mation of the covariance matrix is applied, the (single-level) 
p� p dimensioned S is replaced by the (single-level 

4Note that in fact, every SEM is a two-stage approach as the sample 
covariance matrix has to be estimated in order to estimate the model 
parameters. Nonetheless, usually users supply the data matrix and the 
software estimates the sample covariance matrix automatically. Thus, from a 
user perspective, standard SEM can be considered a one-stage approach.
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represented two-level) ðp � nÞ � ðp � nÞ dimensioned SWF−T
5

in Equation (1), and N by g, and p by p � n in Equations (2), 
(3), and (4). Within the present study, we scrutinize all 
three target matrices, resulting in the shrinkage estimators 
with the equal target matrix, Ŝ�E, the identity target matrix, 
Ŝ
�

I , and the unequal target matrix, Ŝ
�

U :

For an illustration of the effect of the shrinkage estimation 
by Touloumis (2015) in the WF approach (WFcovshrink) in 
the following, we focus on Ŝ�E, see Figure 2. In Panel A, it is 
highlighted how R̂WF−T is used to model ĥ: In Panel B, the 
principle of how the shrinkage estimate Ŝ

�

E alters ĥ is 
explained. In Panel C, a concrete example is presented.

In Panel A, leftmost, we see the (earlier introduced) 
model specification of the two-level intercept-only model in 
the WF approach. A restricted CFA is fitted to the p � n 
“specific-units” variables in the data matrix in WF. In the 
middle, the (co)variances of these p � n “specific-units” varia
bles in SWF−T are shown. To the right, these p � n “specific- 
units” (co)variances are reformulated as the p “all-units” 
(co)variances that are modelled thereof. (Co)variances of 
x1:1 and x1:2 (see upper left, green block) are used to model 
the variances of one common and two unique factors which 
correspond to the between-group and within-group level 
variances of x1: Their variances contribute to the between- 
group and within-group level variances, whereas their 
covariance contributes only to the between-group level vari
ance via the common factor. Similarly, (co)variances of x2:1 
and x2:2 (see lower right, green block) are used to model 
between-group and within-group level variances of x2: The 
covariances of x1:1 and x1:2 with x2:1 and x2:2, respectively 
(see lower left or upper right, orange block), are used to 
model the covariances of the two common factors, and 
every n-th unique factor of each common factor which cor
respond to between-group and within-group level covarian
ces of x1 and x2:

This reformulation helps to understand the principle of 
how shrinkage estimation with the equal target matrix alters 
the estimates of the two-level intercept-only model (ĥ), 
which is illustrated in Panel B. To the left, the reformulated 
SWF−T is shown again. The on-diagonal elements of SWF−T 
(grey bar) are averaged (v̂) and used as the on-diagonal ele
ments (“equal variances”) in the equal target matrix v̂Ip�n: In 
reformulated terms, v̂ is the grand mean of the total varian
ces of both variables x1 and x2 (r̂2

B þ r̂2
W ). The off-diagonal 

elements of v̂Ip�n are zero. To the right, we see an overview of 
the directions in which the sample (co)variances in SWF−T are 
pulled by shrinkage estimation. Generally, on-diagonal ele
ments are pulled towards the mean of the diagonal elements, 

and off-diagonal elements are pulled towards zero. Using the 
reformulation, this means that total variances (r̂2

B þ r̂2
W) are 

pulled towards the grand mean of the total variances 
(r̂2

B þ r̂2
W ), and between-group variances (r̂2

B) are pulled 
towards zero. Consequently, within-group variances (r̂2

W) are 
pulled towards the grand mean of the total variances 
(r̂2

B þ r̂2
W ), too. Between-group covariances (r̂B) and within- 

group covariances (r̂W) are pulled towards zero. The 
expected biases in ĥ are depicted in the rightmost table. It is 
expected that between-group level variances, and between- 
group and within-group covariances, have downward biases, 
whereas within-group variances have an upward biases. 
Therefore, estimates of ICC will be more conservative than 
those derived by the unregularized WF approach.

Let us consider this more concretely. In Panel C, 
WFcovshrink is illustrated by means of an example data set 
(in which g ¼ 50 in contrast to the earlier example data 
set). Leftmost, SWF−T (estimated by the unbiased MLE) is 
depicted. The middle of the panel shows the equal target 
matrix v̂Ip�n where v̂ ¼ 0:99 (mean of the sample variances 
in SWF−T , or reformulated, grand mean of the total varian
ces r̂2

B þ r̂2
W of x1 and x2). In the present medium g, small 

n, large p setting, the shrinkage parameter is k̂ ¼ 0:59, and 
thus, the shrinkage estimate is to a large extent influenced by 
the target matrix. To the right, the resulting shrinkage esti
mate S�E is presented. To comprehend how S�E alters ĥ, we 
compare the model parameter estimates retrieved from the 
WF approach and the WFcovshrink approach (the R code is 
available in the Appendix A). In this example, population 
parameters are r2

B ¼ 0:05, r2
W ¼ 0:95, thus ICC ¼ 0:05, and 

rB ¼ 0:015, and rW ¼ 0:285 for both variables x1 and x2:

It can be seen in Table 1 that for the between-group level, 
over- and underestimation was decreased (by pulling the esti
mates closer to zero). For the within-group level, underestima
tion of the variance of x1 was decreased but overestimation 
slightly increased for x1 (by pulling the estimates of the varian
ces closer to their grand mean), and overestimation of their 
covariance was decreased (by pulling the estimate closer to 
zero).

In both approaches, one estimate of variances at the 
between-group level was negative.6 Concerning the resulting 
ICCs, the estimates of the WFcovshrink approach 
(0:06=ð0:06þ 0:95Þ ¼ 0:06 and −0:04=ð−0:04þ 1:02Þ ¼
−0:04) were more accurate than those of the unregularized 

5Note that in the implementation of the shrinkage estimation in R 
(ShrinkCovMat package), only the unbiased MLE, which has g–1 in the 
denominator, can be used. In contrast, the default of single-level SEM in 
lavaan (i.e., WF approach) is the normal theory derived, biased MLE in 
Equation 5 (Rosseel et al., 2023, reference manual p.81 accessed on 16 
September 2023, lav_matrix_cov function). We run the unregularized WF 
approach with both the unbiased and the biased MLE to check whether they 
differ substantially. In Figure B1 in the Appendix we see that for convergence 
there were no differences, and for estimation accuracy, there were negligible 
differences in using the unbiased or biased estimator of the sample 
covariance matrix.

6The unregularized WF approach that uses the ML sample covariance matrix 
has high variability and low bias in small samples, whereas the shrinkage 
estimate in the WFcovshrink approach reduces variability by means of bias. 
Thus, in other data sets, the unregularized WF approach may yield non- 
negative, overestimated between-group level variances. There are different 
procedures to deal with inadmissible, negative between-group level variances 
(so called “Heywood cases”), that we would expect (and empirically found in 
the present study) more often in the downwardly biased WFcovshrink 
approach, for instance, setting them to zero (see e.g., Zitzmann et al., 2022, 
who justify the procedure by the very definition of MLE). However, non- 
negative, overestimated between-group level variance, which we might 
expect more often in the unregularized WF approach, are taken at face value. 
Thus, the downward bias in the WFcovshrink approach might be dealt with 
better (in addition to its estimates being more accurate).
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WF approach (0:15=ð0:15þ 0:88Þ ¼ 0:14 and −0:08=
ð−0:08þ 1:01Þ ¼ −0:08). In sum, all but one estimate are 
closer to their population counterparts in WFcovshrink com
pared to the unregularized WF approach. Nevertheless, this was 
just one example data set. Whether WFcovshrink yields empiric
ally reliable similar gains in performance in other settings, and 
by means of other target matrices than the equal target matrix 

v̂Ip�n, remains to be put to test. We addressed these questions 
with a simulation study, which we will present next.

4. Simulation Study

With this simulation study, we aimed to investigate whether 
applying shrinkage estimation, as part of the two-stage SEM 

Figure 2. Shrinkage estimation of the covariance matrix in the WF approach. 
Note. SWF−T contains (co)variances of p � n “specific-units” variables. In Panel A, these are reformulated as (co)variances of p “all-units” variables modelled in the 
two-level intercept-only model. Panel B introduces the principle of how the shrinkage estimate with the equal target matrix alters estimates of the two-level inter
cept-only model. In Panel C, a numeric example with the earlier data set (number of groups g ¼ 50, group size n ¼ 2, and number of observed variables p ¼ 2) is 
given. The R code to generate the (unbiased) sample covariance matrix and apply shrinkage estimation is available in Appendix A.

Table 1. Model parameter estimates of two-level intercept-only model for example data set.

Approach
Between Within

r2
x1 ¼ 0:05 r2

x2 ¼ 0:05 rx1x2 ¼ 0:015 r2
x1 ¼ 0:95 r2

x2 ¼ 0:95 rx1x2 ¼ 0:285

ĥWF 0.15 −0.08 −0.05 0.88 1.01 0.35
ĥWFcovshrinkE 0.06 −0.04 −0.02 0.95 1.02 0.15

Note. Example data set with number of groups g ¼ 50, group size n ¼ 2, and number of observed variables p ¼ 2: The R code to generate 
data and estimate the models is available in Appendix A.
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estimation approach, would increase convergence and esti
mation accuracy in multilevel SEM when small samples at 
any level or small ICCs are present. The idea is to obtain a 
biased but more precise estimate of the covariance matrix R 

that yields more accurate model parameters ĥ in turn. 
Specifically, we applied the shrinkage estimator by 
Touloumis (2015) to the WF approach in multilevel SEM. 
In the following, we outline the method of our study before 
presenting and discussing the main findings.

4.1. Method

The computations were conducted on an AMD Ryzen 
Threadripper PRO 3975WX 32-cores (3.50 GHz) CPU on a 
Windows 10 (Version 20H2) platform utilising R version 
4.3.1 (R Core Team, 2023), along with several R packages: 
cowplot version 1.1.1 (Wilke, 2020), DescTools version 
0.99.50 (Signorell et al., 2024), dplyr version 1.1.2 (Wickham 
et al., 2023), ggplot2 version 3.4.2 (Wickham et al., 2023), 
huxtable version 5.5.6 (Hugh-Jones, 2022), lavaan version 
0.6-15 (Rosseel et al., 2023), patchwork version 1.1.2 
(Pedersen, 2022), ShrinkCovMat version 1.4.0 (Touloumis, 
2019), tidyr version 1.3.0 (Wickham et al., 2022), and xlsx 
version 0.6.5 (Dragulescu & Arendt, 2020). The R code for 
data generation, analysis, table, and figures is available at 
https://github.com/demianJK/WFcovshrink.

4.1.1. Data Generation
We varied different factors that we allocate to either sample 
characteristics or population characteristics to facilitate inter
pretation. We make this distinction to emphasize what we 
can modify (by our study design) and what not. Sample 
characteristics comprise the number of groups g, the group 
size n, and the number of observed variables p. We included 
the following numbers of groups: 4, 10, 30, 50, and 100. 
The smallest number of groups is given by the minimum 
sample size that the R function for shrinkage estimation can 
deal with (which relates to g in the WF approach). The 
maximum number of groups was chosen to see how the 
WFcovshrink approaches perform in samples large enough 
to achieve good performance by the unregularized LF and 
WF approaches to multilevel SEM. The group size was var
ied between 2, 5, and 10. We restrained the upper group 
size to 10, because the WF approach is rather advised for 
smaller n scenarios (Barendse & Rosseel, 2020; Walther 
et al., 2024), because of larger computational costs, and pre
liminary simulations supported that this holds true for 
WFcovshrink as well. As numbers of observed variables p, 
we selected 2, 5, and 10. The population characteristics 
encompass the variances and covariances of the population 
covariance matrix at both the between- and within-group 
level. The variance at both levels was determined by the 
ICC, which is defined as the ratio of between-group vari
ance to the total variance (Hox et al., 2017), r2

B=ðr
2
B þ r2

WÞ:

Two levels of the ICC were included, 0.05 and 0.25, which 
represent the lower and upper levels of realistic ICCs in the 
social sciences (Adams et al., 2004; Gulliford et al., 1999). 

The total variances were set to 1, and thus, ICC ¼ r2
B: The 

covariances were determined by the correlation at each level. 
Correlations of .10 and .30 were chosen, inspired by meta- 
analytically derived small and large correlations in the social 
sciences (Gignac & Szodorai, 2016). Covariances were calcu
lated through the variance and the correlation. The combin
ation of all factor levels in our simulation study resulted in 
a fully-crossed design with 360 conditions. For each condi
tion, 1000 data sets were simulated.

4.1.2. Data Analysis
Two-Level Intercept-Only Model: As pointed out earlier, we 
considered only the two-level intercept-only model or, put 
differently, a model that estimates the (co)variances of the p 
all-units variables at the between-group and within-group 
levels, and the means of the between-group level, freely. We 
did so because various structured models (e.g., x1 as pre
dictor of x2 or the other way around) have the same under
lying covariance matrix, and we were primarily interested in 
examining the effects of shrinkage estimation of the covari
ance matrix on model performance.

Approaches: We compared the performance of the pro
posed two-stage estimation WFcovshrink to the unregular
ized WF approach, and the unregularized, standard LF 
approach. For WFcovshrink, we scrutinized a consistent 
usage of all target matrices: the equal target matrix in 
WFcovshrink(E), the identity matrix in WFcovshrink(I), and 
the unequal target matrix in WFcovshrink(U).

4.1.3. Evaluation Criteria
We conducted comparisons of model performance based on 
convergence and estimation accuracy. A model was deemed 
converged if the optimizer indicated that it had found a 
solution. The convergence rate represents the percentage of 
converged models out of the total number of estimated 
models per condition. Estimation accuracy was evaluated in 
terms of bias and overall accuracy (which incorporates both 
bias and variance of an estimator). We considered the rela
tive bias, 

P
ðĥ − hÞ=h � 100%, and the relative root mean 

squared error (RMSE), 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðĥ − hÞ

2
q

=h � 100%:

4.2. Results

Hereinafter, we will delve into the key findings of the simula
tion study. We will commence by examining convergence, fol
lowed by a discussion on estimation accuracy (bias and 
overall accuracy). Readers interested in further results are 
referred to the supplementary materials provided in the 
Appendix. To summarize, we found evidence that the input 
type (data or sample covariance matrix) and the type of MLE 
of the sample covariance matrix (biased or unbiased) did not 
influence the performance of the WF approach substantially 
(Figure B1), that the WFcovshrink approaches had no severely 
increased computation times in contrast to the WF approach 
(Figure B2), and that the WFcovshrink approaches yielded 
higher percentages of negatively estimated between-group level 
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variances and ICC (which we will link later to an increased 
downward bias).

4.2.1. Convergence
In terms of sample characteristics, the sample size at level-2, 
g, proved to be the most influential factor affecting conver
gence. As illustrated in Panel A of Figure 3, convergence 
rates aggregated by g revealed a typical observation: for the 
LF and WF approaches, convergence rates increased with 
increasing sample size. In contrast, the WFcovshrink 
approach consistently converged across all sample sizes. 
Previous research (Walther et al., 2024) has highlighted the 
significance of the relationship between the columns and 
rows of the data matrices in understanding convergence 
rates, as depicted in Panel B. Replicating earlier findings, we 
observed that cols < rows and cols � rows are required for 
converging models in the LF and WF approaches, respect
ively. Additionally, the LF approach tended to converge in 
more diverse settings because satisfying p < g (in the long 
format between-group data matrix LF-B) is easier than satis
fying ðp � nÞ � g (in the wide format total data matrix WF- 
T) (Walther et al., 2024). Notably, this restriction did not 
apply to the WFcovshrink approaches, regardless of cols:
rows of WF-T. It is interesting to note that convergence 
rates did neither significantly differ by the number of 
observed variables (p) nor the population characteristics.

4.2.2. Estimation Accuracy
In the following, we review the estimation accuracy of 
parameters derived from the LF, WF, and WFcovshrink 
approaches. Firstly, we examine the relative bias for the 
model parameters, and secondly, the overall estimation 
accuracy (relative RMSE) at the between- and within-group 
levels and the thereof estimated ICCs. Note that for all esti
mation accuracy parameters, we only considered settings 
resulting in convergence rates greater than zero across all 
approaches. Given the WF approach’s tendency to exhibit 
the lowest convergence rates, this implies that we exclusively 
considered settings where p � n � g: Otherwise, comparing 
estimation accuracy measures aggregated by different 

settings would lead to unfair comparisons, as the 
WFcovshrink approaches consistently converged, even in 
practically unrealistic, highly inaccurate settings (e.g., g ¼ 4, 
n ¼ 2, and p ¼ 10).

Bias: We focused on four types of parameters of the ran
dom-intercept models, variances and covariances at the 
between- and within-group level, respectively, and the 
thereof estimated ICCs. These are depicted in Figure 4. 
Overall we see, as expected from the known bias-variance 
tradeoff, that the WFcovshrink approaches had increased 
biases in contrast to the unregularized approaches. 
Moreover, when comparing the hypothesized direction of 
biases in Panel B of Figure 2 with the actual empirical 
observations, we found a match between our hypotheses 
and the observed evidence. More specifically, at the 
between-group level, both variances and covariances exhib
ited a tendency towards underestimation. Conversely, at the 
within-group level, the unregularized approaches were 
unbiased regardless of the sample size (number of groups 
g), while the WFcovshrink approaches introduced an 
upward bias in variances, and a downward bias in covarian
ces. Following from this, all approaches exhibited a down
ward bias in the estimates of the ICC, and the WFcovshrink 
approaches consistently yielded a more conservative under
estimation. This downward bias trend in the between-group 
level variances and the estimates of the ICC was further evi
denced by the significant proportion of negatively estimated 
variances and ICCs in the WFcovshrink approach, as illus
trated in Figure B3 in the Appendix.

Overall Estimation Accuracy: In the upper panel of 
Figure 5, the relative RMSE of the between-group parame
ters aggregated by number of groups g and group size n is 
shown. Overall, smaller numbers of groups g and group 
sizes n resulted in less accurate estimates. However, the 
WFcovshrink approaches consistently yielded more accurate 
estimates, with the most significant improvements observed 
in settings with small g and especially small n samples. For 
example, in a more realistic scenario with a group size of 5 
and 50 groups, the unregularized approaches produced rela
tive RMSEs of approximately 200%, while the WFcovshrink 
approaches reduced it by half. In the middle panel, which 

Figure 3. Convergence rates by sample characteristics. 
Note. g ¼ number of groups; WFcovshrink(E) ¼ equal target matrix; WFcovshrink(I) ¼ identity target matrix; WFcovshrink(U) ¼ unequal target matrix. The cols:
rows refer to those of long format between-group data matrix LF-B (p : g) and the wide format total data matrix WF-T ððp � nÞ : gÞ for the LF and WF approaches, 
respectively.
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focuses on the within-group level, it can be seen that the 
WFcovshrink approaches were generally more accurate than 
the unregularized approaches only when the group size was 
very small (n ¼ 2). However, as the group sizes increased, 
the estimates from the WFcovshrink approaches tended to 
be somewhat less accurate. Returning to the setting with a 
group size of 5 and 50 groups, the unregularized approaches 
exhibited an average relative RMSE of approximately 30%, 
whereas the WFcovshrink approaches showed an average 
relative RMSE of around 45%: The relative RMSE of the 
ICC estimates are shown in the lower panel. They combine 

the results of the between- and within-group level: when the 
group size was very small (n ¼ 2), the WFcovshrink 
approaches were more accurate, particularly, the smaller the 
number of groups g were, but when the group size n 
became larger, the unregularized approaches became more 
accurate. In the setting with a group size of 5 and 50 
groups, the estimated ICCs showed an average relative 
RMSE of approximately 75% in the WFcovshrink 
approaches, and approximately 65% in the unregularized 
approaches. In sum, the benefit of the WFcovshrink 
approaches appealed to the between-group parameters in all 

Figure 4. Relative bias of parameter estimates. 
Note. g ¼ number of groups; WFcovshrink(E) ¼ equal target matrix; WFcovshrink(I) ¼ identity target matrix; WFcovshrink(U) ¼ unequal target matrix.
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Figure 5. Overall estimation accuracy by sample characteristics. 
Note. g ¼ number of groups; n ¼ group size; p ¼ number of observed variables; WFcovshrink(E) ¼ equal target matrix; WFcovshrink(I) ¼ identity target matrix; 
WFcovshrink(U) ¼ unequal target matrix.
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settings, including small group sizes (n � 10) for small to 
moderate numbers of groups (g � 100), but to within-group 
and ICC parameters only in very small group sizes settings 
(n ¼ 2) for small to moderate number of groups (g � 100).

Figure 6 illustrates the estimation accuracy influenced by 
the ICC and the correlations of variables in the population. 
The upper panel, which focuses on the between-group 
parameters, shows that smaller ICC values (indicating 

Figure 6. Overall estimation accuracy by population characteristics. 
Note. ICC¼ Intraclass Correlation; qB ¼ correlation at between-group level; qW ¼ correlation at within-group level; WFcovshrink(E) ¼ equal target matrix; 
WFcovshrink(I) ¼ identity target matrix; WFcovshrink(U) ¼ unequal target matrix.
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smaller variances at the between-group level) led to less 
accurate estimates across all approaches. Notably, the 
WFcovshrink approaches consistently yielded more accurate 
estimates compared to the unregularized approaches here. 
Furthermore, an interaction effect was evident between ICC 
and correlation at both levels, impacting the overall estima
tion accuracy of the between-group level parameters. 
Settings with a low ICC and small correlations at the 
between-group level resulted in the least accurate estimates 
across all approaches (approximately 900% in the unregular
ized approaches and approximately 400% in the 
WFcovshrink approaches). Notably, in these settings, larger 
correlations at the within-group level additionally decreased 
the accuracy of the between-group level parameters. 
Conversely, settings with a high ICC and large correlations 
at the between-group level yielded the most accurate esti
mates across all approaches (approximately 6% in the 
unregularized approaches, slightly less in the WFcovshrink 
approaches). Here, the correlations at the within-group level 
had no substantial influence. Similar to scenarios with small 
sample sizes, the WFcovshrink approaches proved most 
effective in addressing the more challenging settings. As 
indicated in the middle panel, which shows the accuracy of 
the within-group level parameters, we observed that smaller 
correlations at the within-group level led to less accurate 
estimates across all approaches. It appeared that the 
WFcovshrink approaches resulted in more accurate esti
mates at the within-group level when these correlations at 
the within-group level were small but not when they were 
large. Thus, once again, we observed that the WFcovshrink 
approach was most effective in handling the more problem
atic settings. In the lower panel, showing the estimates of 
the ICCs, we found that the ICC in population had the 
strongest influence. Small ICCs resulted in the least accurate 
estimates throughout all approaches, but the WFcovshrink 
approaches were the most effective here again.

5. Discussion

Small sample sizes, such as small group sizes (level-1 units) 
and small numbers of groups (level-2 units), often pose 
challenges to multilevel SEM, including difficulties in 
achieving convergence and inaccuracies in estimating 
between-group level parameters. To tackle these issues, our 
research investigated the effectiveness of a two-stage estima
tion approach, WFcovshrink, which replaces the sample 
covariance matrix by an estimate of the linear shrinkage 
estimator introduced by Touloumis (2015). Unlike the trad
itional unregularized long format (LF) and wide format 
(WF) approaches, the WFcovshrink methods consistently 
achieved convergence, regardless of the sample size or the 
ratio of columns to rows in the data matrix. In terms of 
accuracy, WFcovshrink outperformed the other approaches 
in estimating between-group level parameters across all sam
ple sizes tested. Regarding within-group level accuracy, 
WFcovshrink proved superior only in scenarios with 
extremely small group sizes (n ¼ 2), but even when the 
number of groups reached up to 100. Our approach also 

delivered more accurate ICC estimates by exhibiting a con
servative downward bias compared to the typically overesti
mated ICCs found in unregularized methods in cases with 
small ICCs (0.05) and very small group sizes (n ¼ 2). Given 
that in psychology and the education sciences, the ICCs 
commonly encountered are usually at the lower end (Adams 
et al., 2004; Gulliford et al., 1999), the conservative nature 
of WFcovshrink’s estimates might be preferred. 
WFcovshrink showed its greatest efficacy in the most chal
lenging conditions: small samples at any level, low ICCs, 
and minor correlations at the between- or within-group 
level. The performance of the three target matrices within 
WFcovshrink was largely similar. In sum, incorporating 
shrinkage estimation of the sample covariance matrix into a 
two-stage approach for multilevel SEM significantly miti
gated the issues of non-convergence and inaccurate param
eter estimates at the between-group level, and for very small 
group sizes, it effectively shrunk the issue of imprecise 
within-group level parameter estimates.

However, we must acknowledge that the proposed two- 
stage approach is only a partial success at this time. While it 
proves the concept, it remains limited in practical applica
tion for two main reasons. Firstly, settings with very small 
group sizes (n ¼ 2) combined with small ICCs are relatively 
rare. These may appear in pilot studies, but few other 
research areas consider such settings. Secondly, and closely 
related to the first point, more customized target matrices 
need to be considered. The employed target matrices were 
designed for single-level data, not for single-level representa
tions of multilevel data. Thus, the multilevel nature of the 
data was not adequately accounted for. Future research calls 
for more customized target matrices, as without these, the 
approach is rarely applicable in any realistic setting.

Further points that limit the generalizability of our find
ings need to be addressed. Firstly, in each simulation scen
ario, the variances of all observed variables at each level, 
and consequently the ICCs, were identical. This uniformity 
might have led to overly optimistic results when using the 
equal target matrix for shrinkage estimation. Closely related, 
the total variance of each observed variable was set to 1 in 
the population. Thus, the results may be limited to situa
tions with variables having unit variances and future 
research is needed to investigate observed variables with 
other metrics. However, when practitioners have data with 
other than unit variance, two pragmatic ways to use our 
approach may be (1) to first standardize the variances and 
then use any target matrix or (2) to use the equal or 
unequal target (but not the identity) target matrices. 
Secondly, we limited the simulation study to balanced data 
(i.e., equal group size), but unbalanced data is often the case 
in practice. How our approach might be used with missing 
data deserves further attention. Missing values can be 
imputed ad hoc, for example, with multiple imputation 
techniques such as MICE (Buuren & Groothuis-Oudshoorn, 
2011), and the resulting complete data matrix can then be used 
for regularization of the covariance matrix. Though, in small 
sample scenarios, imputation ought to be carefully considered 
as it might introduce bias (Grund et al., 2018). Another idea 
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would be to use the pairwise complete data to estimate the 
regularized covariance matrix. In any case, standard errors are 
likely to be incorrect because of the varying sample sizes for 
each (co)variance and we would have to account for this fact. 
Moreover, these are just ideas that need to be empirically 
studied. Till then, the application of our approach is limited to 
balanced data (e.g., experimental data). Thirdly, we only inves
tigated scenarios with small group sizes n because of larger 
computational costs of the p � n “specific-units” variables in the 
WF approach. The model size and syntax grows with both p 
and n as well. To formulate the constraints in the WF approach 
more efficiently one could use Kronecker product constraints 
as suggested by Oort (2001, 2009). In this regard, however, 
using (proprietary) software with more advanced support for 
matrix algebra in SEM, such as openMX, is suggested. Fourthly, 
our investigation focused exclusively on two-level intercept- 
only models. It remains to be tested how regularized estimators 
of unstructured covariance matrices perform with more struc
tured models. Arruda and Bentler (2017) also used a regular
ized estimator of unstructured covariance matrices, but, unlike 
our approach, applied it to the weight matrix in generalized 
least squares (GLS) estimation – which is commonly the sample 
covariance matrix. They found that their approach improved 
overall model evaluation (test statistics, rejection rates) in small 
samples compared to standard GLS and MLE for a common 
CFA in simulation studies, which includes three latent factors, 
each with five manifest variable indicators and unique error 
variances. Although these results suggest that the benefits of 
regularized estimators of unstructured covariance matrices, 
such as the one we employed by Touloumis (2015), could 
extend to more structured models, a thorough exploration of 
this possibility would be a valuable avenue for future research. 
Lastly, the accuracy of standard errors produced by 
WFcovshrink and the development of potential corrections 
warrant further investigation in order to to ensure the 
approach’s broader reliability and applicability.

In conclusion, the application of shrinkage estimation to 
the covariance matrix within multilevel structural equation 
modeling (SEM) is a relatively new and evolving field. Our 
study stands out as one of the pioneering efforts to integrate 
this shrinkage estimation of covariance matrices in the SEM 
framework, and, to the best of our knowledge, it is the first 
to examine this method specifically in the multilevel model
ing context. However, before the approach can be applied 
broadly in practice, more research needs to be done. Still, 
we believe this method merits consideration by the research 
community, offering a valuable tool for enhancing the 
accuracy and convergence of multilevel SEM analyses in 
small sample size scenarios.
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Appendices 

Appendix A

R Code

### Example Code 
# - for data, sample covariance matrix, and two-level random-intercept model in Figure 1 (with g¼4)

# - for shrinkage estimate of the sample covariance matrix, and two-level random-intercept model in Figure 2,  
and estimates in Table 1 (with g¼50) 

# Note that the code only works for p¼2 and n¼2.
# If you want to examine other settings, check out the
# the code for the simulation study on Github:
# https://github.com/demianJK/WFcovshrink 

## (0) preparation ######################################################## 

# load required packages
library(lavaan) # for model estimation
library(tidyr) # for reformating LF to WF with pivot_wider()
library(ShrinkCovMat) # for shrinkage estimation 
# (code runs in ShrinkCovMat 1.4.0 which is the latest on CRAN, Feb 21st 2024) 

# set random number seed to obtain example data 

set.seed(4395) 
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## (1) Population Characteristics ######################################### 

# We use the lavaan syntax to set the population models.
popModel_B <- “x1��0.05�x1; x2��0.05�x2; x1��0.015�x2” # between level
popModel_W <- “x1��0.95�x1; x2��0.95�x2; x1��0.285�x2” # within level
# means are zero by default 

# We have two variables x1 and x2.
p <- 2

# The variances for both variables are the same at each level.
# The variance at the between level is 0.05.
# The variance at the within level is 0.95.
# Thus, the ICC¼0.25.
# The correlation of the two variables is the same at both levels (.3).
# The covariances differ.
# Transform the correlation formula to get the covariances.
# corr_x1x2¼cov_x1x2 / (sd_x1 � var_x2) 
# j � (sd_x1 � sd_x2) and sd_x1¼sd_x2 thus j � var_x1
# corr_x1x2 � var_x1¼cov_x1x2 

## (2) Sample Characteristics ############################################# 

g <- 50 # number of groups (you may change this)
n <- 2 # group size (balanced data)
N <- g � n # total sample size 

# the data sampling is done in long format (LF)
sample_B <- simulateData(popModel_B, sample.nobs¼g, 

model.type ¼ “lavaan”) # between level 
sample_W <- simulateData(popModel_W, sample.nobs¼N, # within level

model.type ¼ “lavaan”)

groups <- rep(1:g, each¼n) # group numbers (“j” in Figure 1)
LF_T <- sample_W # create data frame with the same dimensions
LF_T[,] <- 0 #. and clear all entries
for (j in unique(groups)) { # merge the sampled data from both levels
for (i in min(which(groups ¼¼ j)):max(which(groups ¼¼ j)))

LF_T[i,] <- sample_W[i,] þ sample_B[j,]

}

LF_T$persons <- rep(1:n, g) # unit numbers (“i” in Figure 1)
LF_T$groups <- as.factor(groups)

LF_T <- cbind(LF_T[,(pþ1):(pþ2)], LF_T[,1:p]) # rearrange columns
# LF-T is the total data matrix in long format (LF). .
round(LF_T[,3:(3þp-1)], 0) # note that we round for Figure 1 and 2
#. . and the total covariance matrix is estimated by the unbiased estimator (see Muth�en, 1994)

Sigma_LF_T <- cov(LF_T[,3:4])

round(Sigma_LF_T, 2) 

# Now we reformat to wide format (WF).
WF_T <- pivot_wider(LF_T, names_from ¼ “persons”, values_from¼3:4, names_sep ¼ “.”)

round(WF_T[,2:(2þ(p�n)-1)], 0) 

varnames <- colnames(WF_T[,2:(2þ(p�n)-1)]) 

# shrinkage estimate Ŝ�_E with equal target Matrix vI_p
# note that unbiased S is employed 

WF_T_trans <- t(WF_T[,-1]) # transpose because ShrinkCovMat(data, .) expects 
# that rows correspond to variables and columns to observations 

# estimate S�_E (note that the approach uses unbiased S_WF-T)
WFcovshrink_E <- ShrinkCovMat::shrinkcovmat.equal(data¼WF_T_trans, 

centered¼FALSE) 

round(WFcovshrink_E$Sigmasample, 2) # unbiased S, round for Figures 1 and 2
round(WFcovshrink_E$Target, 2) # vI_p, round for Figure 2
round(WFcovshrink_E$Sigmahat, 2) # Ŝ�_E, round for Figure 2
round(WFcovshrink_E$lambdahat, 2) # lambda_E, round for Figure 2
# names of covariance matrix required for lavaan
colnames(WFcovshrink_E$Sigmahat) <- varnames

rownames(WFcovshrink_E$Sigmahat) <- varnames 
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## (3) estimate models #################################################### 

model_WF <- paste0(# Level: 1 (unique factors)
“x1.1��Vx1_w�x1.1; x1.2��Vx1_w�x1.2; x2.1��Vx2_w�x2.1; 

x2.2��Vx2_w�x2.2; x1.1��Cx12_w�x2.1; x1.2��Cx12_w�x2.2;”,

# these are the desired within variances and covariances
# Vx1_w, Vx2_w, and Vx12_w are equality constraints 
# Level: 2 (common factors)
“x1.1�0�1; x1.2�0�1; ; x2.1�0�1; x2.2�0�1;”,

# if level-2 variables are aggregates of level-1 variables, 
# intercepts at level-1 have to be fixed to 0
“fx1¼�1�x1.1þ1�x1.2; fx2¼�1�x2.1þ1�x2.2;”, 

# measurement model with factor loadings set to 1
“fx1��fx1; fx2��fx2; fx1��fx2;”, 

# these are the desired between variances and covariances
“fx1�1; fx2�1”) # between means

fit_WF <- sem(model¼model_WF, 

data¼WF_T)

summary(fit_WF) 

fit_WFcovshrink_E <- sem(model_WF,

sample.cov¼WFcovshrink_E$Sigmahat, 

sample.cov.rescale¼FALSE, 

# rescale sample.cov with (g-1/g)?
sample.nobs¼g,

sample.mean¼colMeans(WF_T[,-1]))

summary(fit_WFcovshrink_E) 

## (4) estimate ICCs ######################################################
# ICC in population: 0.05 (see “Population Characteristics”)
# the ICCs are estimated by the parameters of the model-implied matrices 

## WF
fit_WF@Fit@x[7]/(fit_WF@Fit@x[7]þfit_WF@Fit@x[1]) # x1
fit_WF@Fit@x[8]/(fit_WF@Fit@x[8]þfit_WF@Fit@x[3]) # x2 

## WFcovshrink(E)
fit_WFcovshrink_E@Fit@x[7]/(fit_WFcovshrink_E@Fit@x[7]þfit_WFcovshrink_E@Fit@x[1]) # x1
fit_WFcovshrink_E@Fit@x[8]/(fit_WFcovshrink_E@Fit@x[8]þfit_WFcovshrink_E@Fit@x[3]) # x2

Appendix B 

Supplemental Analysis

Figure B1. The WF approach and its different input and sample covariance matrix estimator possibilities. 
Note. Data¼ input was data matrix; S¼ input was sample covariance matrix; biased¼ normal theory derived ML of sample covariance matrix used (default); 
unbiased sample covariance matrix was used (“sample.cov.rescale¼ TRUE”).
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We wanted to control for two differences in the WF and WFcovshrink approaches to check whether performance gains are solely attributable 
to the proposed two-stage approach. Firstly, we wanted to make sure that convergence gains in the WFcovshrink approach are not due to the 
input type, or more specifically, supplying a sample covariance matrix instead of a data matrix. The data matrix has to satisfy that the number of 
columns (number of observed variables) is smaller than the number of rows (number of observations), which is rooted in the implementation of 
traditional MLE in lavaan (see 1.1. The Wide Format (WF) Approach), and we wanted to check whether lavaan has similar constrains when sup
plying a sample covariance matrix (without sweeping the whole source code). Secondly, we wanted to ensure that accuracy gains in the 
WFcovshrink approach are not due to using different MLE of the sample covariance matrix; in particular, the unbiased one in WFcovshrink in 
contrast to the biased one that is the default in the WF approach. Figure B1 depicts the results of the conjugate analysis. With regard to conver
gence rate (Panel A), there were no differences. For overall estimation accuracy of between-group level (Panel B) and within-group level param
eter estimates (Panel C), we found marginal differences. There seemed to have been some kind of interaction between the input and estimator. 
More specifically, the most accurate estimations were derived by supplying the sample covariance estimated by unbiased MLE. In contrast, sup
plying data and using the unbiased MLE as well yielded the least accurate estimations. However, overall these differences might be negligible. 
Thus, convergence and estimation accuracy gains can be mostly attributed to replacing the sample covariance matrix by a shrinkage estimate in 
the WFcovshrink approaches.

The computation time of a model is the time the optimizer needed to find a solution. In the WFcovshrink approaches, the time for the 
shrinkage estimation, which was marginally small for all three target matrices, was added. Figure B2 shows computation times for different aggre
gation levels. Panel A depicts the overall average computation times, which were smallest in the LF approach (� 1s), but not substantially differ
ent in the WF and WFcovshrink approaches (� 3s). In greater detail, Panel B and C depict that the computation time in all WF approaches 
magnified fairly by the number of observed variables p and the group size n. Recall that both quantities determined the number of model param
eters that are freely estimated (p) and equality constrained (n). Again, there was no substantial difference in the WFcovshrink approaches com
pared to the unregularized WF approach. In the LF approach, the number of freely estimated in the LF approach was only determined by the 
number of observed variables p. Thus, the computation time of the LF approach was not influenced by the group size n, and its computation 
times were on average smaller. This could be explained by smaller dimensions of the covariance matrix in LF (p � p) compared to the WF 
approaches (ðp � nÞ � ðp � nÞ). Note that the population characteristics did not result in substantial differences in computation times. To put this 
finding into practical context: the larger computation times of any WF approach might be of little consequence if we only estimate a small num
ber of models.

Figure B2. Computation time by sample characteristics. 
Note. n ¼ group size; p ¼ number of observed variables; WFcovshrink(E) ¼ equal target matrix; WFcovshrink(I) ¼ identity target matrix; WFcovshrink(U) ¼ unequal 
target matrix.
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Two types of inadmissibly negative estimates are depicted in Figure B3: between-group level variances and ICCs (i.e., quotient of between- 
group and total variances). Note that at the within-group level, no negative variances were encountered. The percentages of at least one negative 
variances at the between-group level in a model are shown in Panel A. Across all approaches, the percentage was larger when the number of 
groups g, the group size n, or the ICC was smaller. Overall, the WFcovshrink approaches yielded higher percentages of models with negative var
iances at the between-group level than the unregularized approaches. In Panel B, percentages of negatively estimated ICC for every observed vari
able in a model are shown. A similar picture emerged: percentages soared when the number of groups g, the group size n, or the ICC was 
smaller, and the percentages of the WFcovshrink approaches were higher. The increase in these negative estimates in the WFcovshrink 
approaches is probably related to the amplification of downward bias of between-group level estimates (see Figure 4).

Figure B3. Negatively estimated variances at the between-group level and ICC. 
Note. g ¼ number of groups; n ¼ group size; ICC¼ Intraclass Correlation; WFcovshrink(E) ¼ equal target matrix; WFcovshrink(I) ¼ identity target matrix; 
WFcovshrink(U) ¼ unequal target matrix. In Panel A, percentages of negative variance in any model are shown. Note that negative variances were only present at 
the between-group level. In Panel B, percentages of negative estimates of the ICC of any observed variable are depicted. Thus, percentages depicted in Panel A are 
larger than those in Panel B.
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